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Chapter 3

Real Numbers

3.1 The Invention of Numbers

As early as human beings developed language, they acquired the ability to
count. Counting was very important as we used it to measure how much
food we had, how many tools we had, how many people were in our group.

As we gathered food, or wood for fire, or tools, and we added items into
storage we counted up, we ADDED. As we ate food or burned the wood, we
counted down, or SUBTRACTED.

We learned how to do this as soon as we learned how to talk and perhaps
even before that. This gave us our first set of numbers, the Natural Numbers.
The Natural Numbers consisted of the numbers we could see right in front
of us as we counted up or down.

Natural Numbers = 0, 1, 2, 3, 4, 5, . . . .. and they could get as big as we
needed to count what we were counting.

Thousands of years passed.

We don’t know exactly how the number to represent ”nothing” was first in-
vented. Different cultures approached the situation in their own ways, with
the similar result - the number ZERO.
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The inclusion of zero gives us the set of numbers we call the WHOLE Num-
bers.

Whole Numbers: 0, 1, 2, 3, 4, . . . ..

As we grew more sophisticated we realized that in fact we could have a situ-
ation where a larger number was subtracted from a smaller number. Perhaps
someone borrowed food or supplies with the promise that when possible it
would be returned. In this case, we have less than zero because we have to
pay back what we took. This introduced the negative numbers, and we have
the number set known as the INTEGERS.

The Set of Integers: . . . . . . – 4, – 3, – 2, –1, 0, 1, 2, 3, 4 . . . . . . .

While we had been encountering the situation where the pieces of fruit or
slices of meat did not match the number of people to feed, it took some time
for us to create the math to handle this. We naturally knew that if we had
two children and only one apple, we could cut the apple into equal pieces
and give one to each kid.

To express this mathematically, we invented FRACTIONS. Fractions gave us
a way to be very specific about dividing this up into portions. This produced
what we call the RATIONAL Numbers.

RATIONAL NUMBERS: any number x where x can be expressed as
a

b
, where

a and b are integers

The last number set to discuss the set of all numbers that are possible on a
number line. This set is called the REAL numbers.

3.2 Real Numbers and The Number Line

For many years people believed that the rational numbers included every
number, since fractions could be infinitely precise per our understanding at
the time. While not certain, history suggests that the philosopher Hippa-
sus, familiar with the Pythagoreans and the Pythagorean Theorem, starting
thinking about right triangles.
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The Pythagorean Theorem states that square of the hypotenuse of a right
triangle is equal to the sum of the squares of the two adjacent sides. The was
already a proven result in geometry. Hippasus considered a triangle whose
two sides had length one. The theorem states that the hypotenuse must have
length

√
2.

Figure 3.1: The Pythagorean Theorem

He tried to calculate this (no calculators back then). The number 1.41 was
too small, but 1.42 was too large. Squaring 1.415 got very close to 2, but
was a little too big. After weeks or months or years, he concluded that the
decimals would never repeat, which MUST occur if it can be a fraction.

What number squared is 2?

1.414213562 and it kept going.

This created quite the kerfuffle with the Pythagoreans. What exactly hap-
pened is not clear, but while on a boat with his peers, Hippasus found himself
no longer in the boat and drowned. Rumors spread that he perhaps had as-
sistance leaving the boat.
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Unfortunately for some, it was not possible to toss
√
2 overboard. Once

understood, we recognized that there were many, in fact an infinite num-
ber of numbers that could not be expressed as fractions, i.e., not rational.
We called them IRRATIONAL numbers. These numbers include π, e (the
base of the natural logarithm), and many square roots, cube roots, and so on.

With both rational and irrational numbers, we captured every number pos-
sible on the number line. We call this set the REAL numbers.

FACT: Every point on the number line is a real number.

FACT: Every real number is a point on the line.

The Sets of Numbers:

Natural: 1, 2, 3, 4, 5, . . .

Whole: 0, 1, 2, 3, 4, 5, . . .

Integers: - 4, - 3, - 2, - 1, 0, 1, 2, 3, 4, . . .

Rational: Any number of the form
a

b
where a and b are integers.

Real: Any number on the number line.

Figure 3.2: The Real Number Line

3.3 The Four Operations

The Four Operations

17



Addition: The SUM of two numbers a and b is denoted a + b. To compute
the sum, we add a and b.

Subtraction: The DIFFERENCE of two numbers a and b is denoted a –
b. To compute the difference, we subtract b from a.

Multiplication:The PRODUCT of two numbers a and b is denoted ab, a ·
b, (a)(b) or a*b (the star is usually only used when the other notations are
not available, such as a computer program). To compute the product, we
multiply a times b.

Division: The QUOTIENT of two numbers a and b is denoted a ÷ b,
a

b
, or

a/b. Like the star * in multiplication, the slash / is usually used in computer
programming. To compute the quotient, we divide a by b.

3.4 Properties of Real Numbers

The following hold for all real numbers. Memorization of the properties in
terms of being able to list and state their names is NOT the required skill.
What must occur is the repeated use of them until they are ingrained to be
as natural as tying a shoe, brushing one’s teeth, or seeing the time by looking
at a clock.

Property Addition Multiplication
Commutative Property a + b = b + a ab = ba

Associative Property (a + b) + c = a + (b + c) (ab)c = a(bc)

Identities a + 0 = a (a)(1) = a

Inverses a + (– a) = 0 (a)
(1
a

)
= 1

Distributive Property a (b ± c) = ab ± ac
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The Distributive Property is very important as we learn to work with num-
bers. When we are working with literal numbers whose value we know, it’s
possible to do the calculation using the commutative or associative prop-
erties, but when we introduce variables, which will happen very soon, the
distributive law is essential.

For now, consider 4 (3 + 2) = 4(5) = 20.

The distributive law tells us that 4 (3 + 2) = (4)(3) + (4) (2) = 12 + 8 =
20.

Other examples:

Commutative: 3 + 5 = 5 + 3 = 8

(3)(5) = (5)(3) = 15

Associative: (6 + 8) + 7 = 14 + 7 = 21

6 + (8 + 7) = 6 + 15 = 21

Identities: 5 + 0 = 5 (5)(1) = 5

Inverses: 12 + (– 12) = 0 (7)
(1
7

)
= 1

3.5 Variables

A major distinction between algebra and arithmetic is algebra’s inclusion of
variables, numbers whose values are unknown or remain undetermined yet
are still manipulated and used in calculations to solve problems or explore
mathematical relationships.

Definition: A literal number is a number whose value is known. We express
it by its value, 5, 3, – 7,

√
23.
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Definition: A variable is a number whose value is not known. We express it
with a letter. The best practice is to use lower case letters. For simplicity,
we typically stay with x, y, and z, as well as a, b, and c, until the situation
suggests other letters.

Examples: x, y, a, b.

Stick to lower case and NEVER use the letter o or l which look far too much
like zero and one. The letter z is commonly used, but when writing by hand,
ALWAYS cross the z as it is easy to interpret as the number 2.

Refrain from using i, j, or k as these have a special meaning that we will
discuss later.

Note that we have already used variables (letters to represent numbers) when
we introduced the properties of real numbers.

When we work with variables, it is important to understand that a literal
number in front of a variable MEANS multiplication.

5x, (5)(x) and 5 · x denote the multiplication of 5 times x.

We NEVER write a variable in front of a literal for this. NEVER: x5.

Two variables written next to each other implies multiplication.

xy, (x)(y), and x · y denote the multiplication of x times y.

3.6 Exponents

An exponent is notation to indicate a number being multiplied by itself a
given number of times.

By definition,
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a1 = a

a2 = a · a

a3 = a · a · a

a4 = a · a · a · a

an = a · a · a · a ... a (n times)

3.6.1 Properties of Exponents

For any real number a, we have:

a0 = 1.

a−n =
1

an

(a m) · (a n) = am+n

am

an
= am−n

(am)n = amn

(ab)n = anbn

(
a

b

)n

=
an

bn

Like the properties of real numbers, the desired skill is a working knowledge
developed by repeated use in simplifying expressions that contain exponents.

Examples:

Simplify x3 · x4
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We have x3 · x4 = x3+4 = x7.

Simplify:
x8

x5

x8

x5
= x8−5 = x3

Simplify (x3)4

(x3)4 = x(3)(4) = x12.

Simplify (x3y4z2)5

(x3y4z2)5 = (x3)5(y4)5(z2)5

which is (x15)(y20)(z10)

Or x15y20z10

Simplify
x3y7

x6y5

We get x3−6y7−5 = x−3y2 =
y2

x3

3.7 Roots, Radicals and Rational Exponents

Suppose we want to ask the question, ”What number squared is 225?” or
”What number raised to the 4th power is 81?” These are called roots. Like
exponents, we use ”square” when the power is two and ”cube” when the
power is three. Roots are commonly denoted using the radical sign

√
. When

no number occurs above and before the sign, it is a square root. For higher
roots, a number is placed in front of the symbol.

The square root of a, denoted
√
a, is the number which when squared gives

us a. By definition, (
√
a)2 = a.
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The cube root of a, denoted 3
√
a, is the number which when cubed gives us

a. By definition, ( 3
√
a)3 = a.

The 4th root of a, denoted 4
√
a, is the number which when raised to the fourth

power gives us a. By definition, ( 4
√
a)4 = a.

DEFINITION: c is called the nth root of a if cn = a. c = n
√
a

When n is even, the sign of a root can be positive or negative. For example,
both 22 and (−2)2 are 4, so one can say that both are the square root of
4. We refer to the positive value as the principle root. When asked to find
roots, we typically answer with the principle root only.

Since radicals are exponents, the properties of exponents apply to roots, so
we have:

Properties of Radicals

n
√
an = | a | when n is even. We take the principle (positive) root.

n
√
an = a when n is odd.

n
√
ab = n

√
a · n

√
b

n

√
a

b
=

n
√
a

n
√
b

n
√
am = ( n

√
a)m

3.7.1 Working with Radicals

A common task associated with radical expressions is to simply them. Sim-
plifying radical expressions consists of: 1) removing roots that can be taken
from inside the radical, 2) eliminating the radical signs found in the denom-
inators of fractions, and 3) applying properties of radicals as warranted to
simplify the expression.
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EXAMPLES:

Simplify
√
48

Solution: We know that
√
48 =

√
16 · 3

which is
√
16 ·

√
3 = 4 ·

√
3

The expression cannot be simplified further.

Simplify
√
72

Solution: We know that
√
72 =

√
9 · 8

which is
√
9 ·

√
8 = 3 ·

√
8

but this is 3 ·
√
4 · 2 = 3 ·

√
4 ·

√
2

or 3 · 2
√
2

leaving us with 6
√
2.

Simplify
√
150

Solution: We know that
√
150 =

√
25 · 6

which is
√
25 ·

√
6 = 5 ·

√
6

Simplify
√

x3y4

Solution: We know that
√

x3y4 =
√
x3 · y4

which is
√
x3 ·

√
y4 = y2 ·

√
x2 · x = y2 ·

√
x2 ·

√
x

or xy2
√
x.

Simplify
√

36x8y5
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Solution: We know that
√

36x8y5 =
√
36 · x3 · y4

which is
√
36 ·

√
x8 ·

√
y5 = 6x4 ·

√
y5 = 6x4y2

√
y

Simplify 3
√

81x6y8

3
√

81x6y8 = 3
√
81 · 3

√
x6 · 3

√
y8

Or 3
√
27 · 3 · 3

√
x6 · 3

√
y6 · y2

Which is 3 · x2 · y2 3
√

3y2

Or 3x2y2 3
√

3y2

Simplify
5
√
x10

5
√
x10 =

5
√
x5 · x5

5
√
x5 · 5

√
x5

x · x

x2

When radicals appear in fractions or contain fractions, removing the radical
signs from the denominator is considered a simplification. This process is
called ”rationalizing the denominator.”

Simplify:
1√
2

Multiple both numerator and denominator by
√
2.

1√
2

(√
2√
2

)
=

√
2

2

Simplify:
3√
5
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Multiple both numerator and denominator by
√
5.

3√
5

(√
5√
5

)
=

3
√
5

5

Simplify:
x
√
y

Multiple both numerator and denominator by
√
y.

x
√
y

(√
y

√
y

)
=

x
√
y

y

3.7.2 Rational Exponents

Remember that radicals ARE exponents denoted with a radical sign. One
could eliminate the use of the radical sign by using rational (think fractions)
exponents.

√
a = a

1
2 .

3
√
a = a

1
3 .

4
√
a = a

1
4 .

n
√
a = a

1
n .

Notice that:

√
a ·

√
a = a

1
2 · a 1

2 = a
1
2
+ 1

2 = a1 = a.

3
√
a · 3

√
a · 3

√
a = a

1
3 · a 1

3 · a 1
3 = a

1
3
+ 1

3
+ 1

3 = a1 = a.

We also have:

n
√
am = ( n

√
a)m = a

m
n
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Since rational exponents are exponents, the properties of exponents apply.
Converting radical signs to rational exponents allows one to simplify expres-
sions more easily than can be done with the radical symbols.

With radical notation, even a rather simple expression can appear confusing.

Consider: 3
√
a ·

√
a · 5

√
a

Expressed with rational exponents the same expression becomes trivial.

a
1
3 · a 1

2 · a 1
5 = a

1
3
+ 1

2
+ 1

5 = a
21
30 = a

7
10 which we could write as

10
√
a7.

Example:

Simplify:

√
3
√
a2 · 5

√
a

Before panicking, simply write the expression with rational exponents to get:

(a
2
3 · a 1

5 )
1
2 = (a

2
3
+ 1

5 )
1
2 = (a

13
15 )

1
2 = a

13
30

Almost nobody likes to do this.
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