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Chapter 13

Complex Numbers

13.1 Complex Numbers

We have to this point studied numbers on the real number line. Just as
Hippassus noticed that no rational number could represent

√
2, we have the

situation where no REAL number can represent
√
−1 or in fact the square

root of any number less than zero. For any real number x, we have x2 > 0.

We address this by setting the variable i to represent the value
√
−1. This is

NOT a real number. It has no place on the real number line. To distinguish
i and all multiples of i we refer to these as imaginary numbers.

We designate i =
√
−1.

By definition, this means that i2 = –1.

The properties of roots tell us that
√
ab =

√
a
√
b.

Consider
√
−7

√
(−1)(7)

√
(−1)

√
7

ı
√
7
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The square root of any negative number can be expressed as i multiplied by
the square root of a positive number.

For any real number a > 0,
√
−a = i

√
a

Again, i and any multiple of i are called IMAGINARY numbers. This does
not mean they don’t exist! They are NOT REAL in the context of being a
real number. They exist as much as any other number.

Imaginary numbers: 3i, 7i, –4i, 220i, i
√
13.

PROTOCOL: If the multiple of i is a root, we write the i before the root. If
we have

√
5 times i, we write i

√
5.

Real and imaginary numbers cannot be added or subtracted to produce a
single term. When we have a sum or difference of real and imaginary num-
bers, we express them as a + bi where a and b are real numbers (both a and
b can be negative).

A COMPLEX NUMBER is a number of the form a + bi, where a and b are
real numbers.

The number a is referred to as the real part of the number.
The number b is referred to as the imaginary part of the number.

Complex Numbers: 3 + 7i, 5− 2i, 12 + i
√
3

While it is not incorrect to consider a + bi the sum of two numbers, it is
more accurate and mathematically sound to understand that a + bi is in fact
ONE NUMBER.

13.2 Operations with Complex Numbers

The Four Operations with Complex Numbers
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Addition and Subtraction

Adding and subtracting complex numbers is essentially the same as combin-
ing like terms when we add or subtract polynomials. We combine the real
parts and combine the imaginary parts.

Add (6 + 4i) + (3 + 2i)

We get (6 + 3) + (4 + 2)i

Or 9 + 6i

Subtract (3 + 7i) – (1 + 4i)

So (3 – 1) + (7 – 4)i

Or 2 – 3i

Multiplication

To Multiply – We multiply using FOIL just as we did with binomials.

Multiply (3 + 2i)(5 + i)

We get (3)(5) + (3)(i) + (2i)(5) + (2i)(i)

Or 15 + 3i+ 10i+ 2i22

Note that i squared is negative one.

So we get 15 + 13i – 2 = 13 + 13i

Multiply (4 – 3i)(5 + 2i)

(4)(5)+(4)(2i)+(– 3i)(5)+ – 3i)(2i)

20 + 8i–15i–6i2
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Note that the last term becomes positive because of the squared i.
26 – 7i.

Division

Divide (2 + 3i) / (4 + 2i)

To divide complex numbers, we use what is called the complex conjugate.

Definition: The complex conjugate of the complex number a + bi is a – bi.

The complex conjugate of 6 + 3i is 6 – 3i.

The complex conjugate of 7 – 4i is 7 + 4i.

To divide two complex numbers, express the quotient as a fraction. Multiply
both the numerator and denominator by the complex conjugate of the de-
nominator. This will result in a real number in the denominator. Use FOIL
to simplify the numerator.

Divide
2 + 3i

4 + 2i

2 + 3i

4 + 2i
· 4− 2i

4− 2i

(2 + 3i()4− 2i)

(4 + 2i)(4− 2i)

Apply FOIL to both numerator and denominator.

8− 4i+ 12i− 6i2

16− 8i+ 8i− 4i2

8 + 8i+ 6

16 + 4
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14 + 8i

20

7 + 4i

10

which could also be written as
7

10
+

2

5
i.

Divide
5− 3i

2− 7i

5− 3i

2− 7i
· 2 + 7i

2 + 7i

(5− 3i)(2 + 7i)

(2− 7i)(2 + 7i)

15 + 35i− 6i− 21i2

4 + 14i+ 14i− 49i2

15 + 29i+ 21

4 + 49

36 + 29i

53
36

53
+

29

53
i

Notice that the product of a complex number and its complex conjugate al-
ways eliminates the imaginary parts and produces a real number.

USEFUL FACT: For any complex number a + bi:

(a + bi)(a - bi) = a2 + b2.
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