Skip to main content
Home Conceptual Academy
Understanding Our Natural Universe

Main navigation

  • PocketLab Links
    • Texas Proc 24
    • CA for High Schools
    • Conceptual Algebra
    • Contributions
  • Sign Up
Sign In >

Breadcrumb

  1. Home
  2. Conceptual Physics
  3. Chapter 35: Special Theory of Relativity

Conceptual Physics

Chapter 35: Special Theory of Relativity

  • 35.1 Motion Is Relative
  • 35.2 Postulates of the Special Theory of Relativity
  • 35.3 Simultaneity
  • 35.4 Spacetime and Time Dilation
  • 35.5 Addition of Velocities
  • 35.6 Length Contraction
  • 35.7 Relativistic Momentum
  • 35.8 Mass, Energy, and E = mc(2)
  • 35.9 The Correspondence Principle
Length Contraction
Video Player is loading.
Current Time 0:00
/
Duration 0:00
Loaded: 0%
Stream Type LIVE
Remaining Time -0:00
 
1x
  • 2x
  • 1.75x
  • 1.5x
  • 1.25x
  • 1x, selected
  • 0.75x
  • 0.5x
  • Chapters
  • descriptions off, selected
  • captions settings, opens captions settings dialog
  • captions off, selected

    This is a modal window.

    Beginning of dialog window. Escape will cancel and close the window.

    Text
    Background
    Window
    Font Size
    Text Edge Style
    Font Family

    End of dialog window.

    This is a modal window. This modal can be closed by pressing the Escape key or activating the close button.

    This is a modal window.

    Relativistic length contraction with examples. Duration: 5:43.

    Table of Videos

    • Chapter 1: About Science
      • 1.1 Scientific Measurements
      • 1.2 Scientific Methods
      • 1.3 Science, Art, and Religion
      • 1.4 Science and Technology
      • 1.5 Physics - The Basic Science
      • 1.6 In Perspective
      • Math Corner: Sig Figs and Precision
    • Chapter 2: Newton's First Law
      • 2.1 Aristotle on Motion
      • 2.2 Galileo's Experiments
      • 2.3 Newton's First Law of Motion
      • 2.4 Net Force and Vectors
      • 2.5 The Equilibrium Rule
      • 2.6 Support Force
      • 2.7 Equilibrium of Moving Things
      • 2.8 The Moving Earth
    • Chapter 3: Linear Motion
      • 3.1 Motion is Relative
      • 3.2 Speed
      • 3.3 Velocity
      • 3.4 Acceleration
      • 3.5 Free Fall
      • 3.6 Velocity Vectors
    • Chapter 4: Newton's Second Law
      • 4.1 Force Causes Acceleration
      • 4.2 Friction
      • 4.3 Mass and Weight
      • 4.4 Newton’s Second Law of Motion
      • 4.5 When Acceleration Is g--Free Fall
      • 4.6 When Acceleration Is Less Than g--Nonfree Fall
    • Chapter 5: Newton's Third Law
      • 5.1 Forces and Interactions
      • 5.2 Newton’s Third Law of Motion
      • 5.3 Action and Reaction on Different Masses
      • 5.4 Vectors and the Third Law
      • 5.5 Summary of Newton’s Three Laws
    • Chapter 6: Momentum
      • 6.1 Momentum
      • 6.2 Impulse
      • 6.3 Impulse changes Momentum
      • 6.4 Bouncing
      • 6.5 Conservation of Momentum
      • 6.6 Collisions
      • 6.7 More Complicated Collisions
    • Chapter 7: Energy
      • 7.1 Work
      • 7.2 Potential Energy
      • 7.3 Kinetic Energy
      • 7.4 Work-Energy Theorem
      • 7.5 Conservation of Energy
      • 7.6 Machines
      • 7.7 Efficiency
      • 7.8 Sources of Energy
    • Chapter 8: Rotational Motion
      • 8.1 Circular Motion
      • 8.2 Rotational Inertia
      • 8.3 Torque
      • 8.4 Center of Mass and Center of Gravity
      • 8.5 Centripetal Force
      • 8.6 Centrifugal Force
      • 8.7 Angular Momentum
      • 8.8 Conservation of Angular Momentum
    • Chapter 9: Gravity
      • 9.1 The Universal Law of Gravity
      • 9.2 The Universal Gravitational Constant, G
      • 9.3 Gravity and Distance: The Inverse-Square Law
      • 9.4 Weight and Weightlessness
      • 9.5 Ocean Tides
      • 9.6 Gravitational Fields
      • 9.7 Black Holes
      • 9.8 Universal Gravitation
    • Chapter 10: Projectile and Satellite Motion
      • 10.1 Projectile Motion
      • 10.2 Fast-Moving Projectiles--Satellites
      • 10.3 Circular Satellite Orbits
      • 10.4 Elliptical Orbits
      • 10.5 Kepler’s Laws of Planetary Motion
      • 10.6 Energy Conservation and Satellite Motion
      • 10.7 Escape Speed
    • Chapter 11: The Atomic Nature of Matter
      • 11.1 The Atomic Hypothesis
      • 11.2 Characteristics of Atoms
      • 11.3 Atomic Imagery
      • 11.4 Atomic Structure
      • 11.5 The Periodic Table of the Elements
      • 11.6 Isotopes
      • 11.7 Compounds and Mixtures
      • 11.8 Molecules
      • 11.9 Antimatter
    • Chapter 12: Solids
      • 12.1 Crystal Structure
      • 12.2 Density
      • 12.3 Elasticity
      • 12.4 Tension and Compression
      • 12.5 Arches
      • 12.6 Scaling
    • Chapter 13: Liquids
      • 13.1 Pressure
      • 13.2 Pressure in a Liquid
      • 13.3 Buoyancy
      • 13.4 Archimedes’ Principle
      • 13.5 What Makes an Object Sink or Float?
      • 13.6 Flotation
      • 13.7 Pascal’s Principle
      • 13.8 Surface Tension
      • 13.9 Capillarity
    • Chapter 14: Gases
      • 14.1 The Atmosphere
      • 14.2 Atmospheric Pressure
      • 14.3 Boyle’s Law
      • 14.4 Buoyancy of Air
      • 14.5 Bernoulli’s Principle
      • 14.6 Plasma
    • Chapter 15: Temp, Heat, and Expansion
      • 15.1 Temperature
      • 15.2 Heat
      • 15.3 Specific Heat Capacity
      • 15.4 The High Specific Heat Capacity of Water
      • 15.5 Thermal Expansion
    • Chapter 16: Heat Transfer
      • 16.1 Conduction
      • 16.2 Convection
      • 16.3 Radiation
      • 16.4 Newton’s Law of Cooling
      • 16.5 The Greenhouse Effect
      • 16.6 Climate Change
      • 16.7 Solar Power
      • 16.8 Controlling Heat Transfer
    • Chapter 17: Change of Phase
      • 17.1 Phases of Matter
      • 17.2 Evaporation
      • 17.3 Condensation
      • 17.4 Boiling
      • 17.5 Melting and Freezing
      • 17.6 Energy and Changes of Phase
    • Chapter 18: Thermodynamics
      • 18.1 Thermodynamics
      • 18.2 Absolute Zero
      • 18.3 First Law of Thermodynamics
      • 18.4 Adiabatic Processes
      • 18.5 Meteorology and the First Law
      • 18.6 Second Law of Thermodynamics
      • 18.7 Energy Tends to Disperse
      • 18.8 Entropy
    • Chapter 19: Vibrations and Waves
      • 19.1 Good Vibrations
      • 19.2 Wave Description
      • 19.3 Wave Motion
      • 19.4 Wave Speed
      • 19.5 Wave Interference
      • 19.6 Doppler Effect
      • 19.7 Bow Waves
      • 19.8 Shock Waves
    • Chapter 20: Sound
      • 20.1 Nature of Sound
      • 20.2 Sound in Air
      • 20.3 Reflection of Sound
      • 20.4 Refraction of Sound
      • 20.5 Forced Vibrations
      • 20.6 Resonance
      • 20.7 Interference
      • 20.8 Beats
    • Chapter 21: Musical Sounds
      • 21.1 Noise and Music
      • 21.2 Pitch
      • 21.3 Sound Intensity and Loudness
      • 21.4 Quality
      • 21.5 Musical Instruments
      • 21.6 Fourier Analysis
      • 21.7 From Analog to Digital
    • Chapter 22: Electrostatics
      • 22.1 Electricity
      • 22.2 Electric Charges
      • 22.3 Conservation of Charge
      • 22.4 Coulomb's Law
      • 22.5 Conductors and Insulators
      • 22.6 Charging
      • 22.7 Charge Polarization
      • 22.8 Electric Field
      • 22.9 Electric Potential
    • Chapter 23: Electric Current
      • 23.1 Flow of Charge and Electric Current
      • 23.2 Voltage Sources
      • 23.3 Electrical Resistance
      • 23.4 Ohm’s Law
      • 23.5 Direct Current and Alternating Current
      • 23.6 Speed and Source of Electrons in a Circuit
      • 23.7 Electric Power
      • 23.8 Lamps
      • 23.9 Electric Circuits
    • Chapter 24: Magnetism
      • 24.1 Magnetism
      • 24.2 Magnetic Poles
      • 24.3 Magnetic Fields
      • 24.4 Magnetic Domains
      • 24.5 Electric Currents and Magnetic Fields
      • 24.6 Electromagnets
      • 24.7 Magnetic Forces
      • 24.8 Earth’s Magnetic Field
      • 24.9 Biomagnetism
    • Chapter 25: Electromagnetic Induction
      • 25.1 Electromagnetic Induction
      • 25.2 Faraday’s Law
      • 25.3 Generators and Alternating Current
      • 25.4 Power Production
      • 25.5 Transformers
      • 25.6 Self-Induction
      • 25.7 Power Transmission
      • 25.8 Field Induction
    • Chapter 26: Properties of Light
      • 26.1 Electromagnetic Waves
      • 26.2 Electromagnetic Wave Velocity
      • 26.3 The Electromagnetic Spectrum
      • 26.4 Transparent Materials
      • 26.5 Opaque Materials
      • 26.6 Seeing Light - The Eye
    • Chapter 27: Color
      • 27.1 Color in Our World
      • 27.2 Selective Reflection
      • 27.3 Selective Transmission
      • 27.4 Mixing Colored Lights
      • 27.5 Mixing Colored Pigments
      • 27.6 Why the Sky Is Blue
      • 27.7 Why Sunsets Are Red
      • 27.8 Why Clouds Are White
      • 27.9 Why Water Is Greenish Blue
    • Chapter 28: Reflection and Refraction
      • 28.1 Reflection
      • 28.2 Law of Reflection
      • 28.3 Refraction
      • 28.4 Cause of Refraction
      • 28.5 Dispersion and Rainbows
      • 28.6 Total Internal Reflection
      • 28.7 Lenses
      • 28.8 Lens Defects
    • Chapter 29: Light Waves
      • 29.1 Huygens’ Principle
      • 29.2 Diffraction
      • 29.3 Superposition and Interference
      • 29.4 Thin-Film Interference
      • 29.5 Polarization
      • 29.6 Holography
    • Chapter 30: Light Emission
      • 30.1 Light Emission
      • 30.2 Excitation
      • 30.3 Emission Spectra
      • 30.4 Incandescence
      • 30.5 Absorption Spectra
      • 30.6 Fluorescence
      • 30.7 Phosphorescence
      • 30.8 Lamps
      • 30.9 Lasers
    • Chapter 31: Light Quanta
      • 31.1 Birth of the Quantum Theory
      • 31.2 Quantization and Planck’s Constant
      • 31.3 Photoelectric Effect
      • 31.4 Wave–Particle Duality
      • 31.5 Double-Slit Experiment
      • 31.6 Particles as Waves: Electron Diffraction
      • 31.7 Uncertainty Principle
      • 31.8 Complementarity
    • Chapter 32: The Atom and the Quantum
      • 32.1 Discovery of the Atomic Nucleus
      • 32.2 Discovery of the Electron
      • 32.3 Atomic Spectra: Clues to Atomic Structure
      • 32.4 Bohr Model of the Atom
      • 32.5 Explanation of Quantized Energy Levels: Electron Waves
      • 32.6 Quantum Mechanics
      • 32.7 Correspondence Principle
    • Chapter 33: The Atomic Nucleus
      • 33.1 X-Rays and Radioactivity
      • 33.2 Alpha, Beta, and Gamma Rays
      • 33.3 Environmental Radiation
      • 33.4 The Atomic Nucleus and the Strong Force
      • 33.5 Radioactive Half-Life
      • 33.6 Radiation Detectors
      • 33.7 Transmutation of Elements
      • 33.8 Radiometric Dating
    • Chapter 34: Nuclear Fission and Fusion
      • 34.1 Nuclear Fission
      • 34.2 Nuclear Fission Reactors
      • 34.3 The Breeder Reactor
      • 34.4 Fission Power
      • 34.5 Mass–Energy Equivalence
      • 34.6 Nuclear Fusion
      • 34.7 Controlling Fusion
    • Chapter 35: Special Theory of Relativity
      • 35.1 Motion Is Relative
      • 35.2 Postulates of the Special Theory of Relativity
      • 35.3 Simultaneity
      • 35.4 Spacetime and Time Dilation
      • 35.5 Addition of Velocities
      • 35.6 Length Contraction
      • 35.7 Relativistic Momentum
      • 35.8 Mass, Energy, and E = mc(2)
      • 35.9 The Correspondence Principle
    • Chapter 36: General Theory of Relativity
      • 36.1 Principle of Equivalence
      • 36.2 Bending of Light by Gravity
      • 36.3 Gravity and Time: Gravitational Red Shift
      • 36.4 Gravity and Space: Motion of Mercury
      • 36.5 Gravity, Space, and a New Geometry
      • 36.6 Gravitational Waves
      • 36.7 Newtonian and Einsteinian Gravitation
      • Physics Review

    College Curriculum

    • All About This Site!!
    • Class Activities!!!
    • Hybrid Courses
    • Expensive Textbooks

    College Prep

    • How To Study
    • Home Schools
    • High Schools

    More Help

    • Instructor Support
    • Instructor FAQ
    • Student Testimonies
    • Quick Tour (60 seconds)

    Contact Us

    • Student FAQ
    • Support & Requests

    © 2025 Conceptual Academy, PBC

    Legal

    • Privacy Policy
    • Terms of Service
    • Accessibility